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Semester: Second Session: Final Evaluation

Name of Student: Himanish Ganjoo ID No: 2011A3PS153P

Abstract

The dark matter power spectrum is an important cosmological observable in the

Hot Big Bang model, defined as the Fourier transform of the two-point correlation

function of the field of dark matter density fluctuations. It gives a quantitative measure

of the density (and velocity) fluctuations at different scales in the universe and has

severe implications for the formation of large scale structures. This power spectrum

depends on a number of cosmological parameters. In particular, we are interested in

its dependence on mass of cosmological neutrinos. Massive neutrinos contribute to

radiation content in the early universe, and to matter after becoming non-relativistic,

delaying transition from the matter-radiation equality, and thus suppressing the matter

power spectrum at small scales. This is expected to have significant consequences on

the formation of galaxies, as it suppresses the growth of structure on small scales. We

explain and show the modification of the power spectrum and its associated quantities:

1) the halo mass function 2) the halo bias, and 3) the neutral HI bias.
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Chapter 1

Introduction

Modern cosmology is based upon the cosmological principle, which posits that the

universe is on large scales homogeneous and isotropic. Spacetime is described by the

Robertson-Walker metric:

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]

Here, k can take values of −1, 0, 1 based on the overall curvature of the universe,

and a(t) is the scale factor that encodes the expansion of the universe.

The currently successful theory of cosmology is the Big Bang Theory. This is

parameterised by the Lambda-CDM model of the universe, which includes a cosmo-

logical constant and cold dark matter. This model assumes general relativity to be the

correct theory of gravitation, and goes on to explain the inhomogeneities in the Cos-

mic Microwave Background, the formation of large scale structure, and the observed

acceleration in the expansion of the universe.

Although the universe appears homogeneous on large scales, locally, we can ob-

serve that there are inhomogeneities, owing to the presence of structures. The theory

explaining the presence and dynamics of this is called Structure Formation.

The presence of nonlinear structures greater in size than 100 Mpc on smaller scales

in the form of galaxy clusters, superclusters, and voids and filaments can be explained

through the principle of gravitational instability. Jeans calculated the dynamics of the

growth of initial density perturbations in a cloud of gas in 1902, and the same principles

can be used to model the dynamics of structure in the universe.

Structure in the universe is assumed to have evolved from small initial perturba-

tions in density due to the process of gravitational instability and collapse. Structure

formation studies the properties and evolution of these instabilities in an expanding

1



universe. A complete derivation of the equations for the evolution of these involv-

ing general relativity is involved and complex, so we shall stick to deriving solutions

using Newtonian dynamics, which is a reasonable approximation model on the scales

involved.

We consider the universe to be an ideal Newtonian fluid, and we study instabilities

in terms of a dimensionless density contrast parameter that describes the deviation of

the density of the fluid at a point relative to the average density of the fluid.

δ(x) =
ρ(x)

ρ̄
− 1

Considering the fluid to be characterised by its density, pressure, and velocity field,

we can write three equations that govern its motion in the presence of a gravitational

field φ:

Dρ

dt
+ ρ∇r · ~u = 0 (Continuity)

D~u

dt
= −∇rP

ρ
−∇rφ (Euler)

∇2
rφ = 4πGρ (Poisson)

Here, D/dt is the convective derivative, which corresponds to:

Df

dt
=
∂f

∂t
+ ~u · ∇f (1.1)

To study the evolution of perturbations, we decompose the quantities governing the

above equations into a homogeneous background part, plus a small perturbation, and

then expand the equations, dropping terms after the first order of small perturbations.

Thus u becomes u+ v, φ becomes φ+ δφ and ρ becomes ρ+ δρ.

In an expanding universe, physical coordinates are related to comoving coordinates

by the scale factor:

~r(t) = a(t) · ~x

~u(t) =
ȧ

a
~x+ a(t)

d~x

dt

Where the peculiar velocity field is defined as:
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~v = a(t)
d~x

dt

If we write the fluid equations in terms of perturbed quantities and change r-

derivatives to x-derivatives, we get:

δ̇ =
1

a
∇ · [(1 + δ)~v]

~̇v +
ȧ

a
~v +

1

a
(~v · ∇)~v = −1

a
~∇δφ−

~∇δp
aρ̄(1 + δ)

∇2δφ = 4πGρ̄a2δ

For the purposes of our discussion, we will consider only the evolution of adiabatic

initial perturbations in cold dark matter. This is the component which influences

structure formation the most. An essential property of cold dark matter is that it is

pressureless, which we will use in our further derivation. Cold dark matter also has

no interaction with baryonic matter, and we can neglect the density perturbations of

baryons while considering the perturbed Poisson equation. Our set of equations then

becomes, using the subscript DM for dark matter, and ignoring second-order terms:

δ̇DM +
1

a
~∇ · ~vDM = 0

~̇vDM +
ȧ

a
~vDM = −1

a
~∇δφ

∇2δφ = 4πGρ̄DMa
2δDM

Eliminating the velocity field term, and combining the equations, we get the dy-

namical equation for the evolution for dark matter perturbations:

δ̈ + 2
ȧ

a
δ̇ = 4πGρ̄δ

It is rather instructive to look at this equation qualitatively. It resembles the

equation for a damped harmonic oscillator, with the Hubble Parameter acting as a sort

of a damping term. Thus, the expansion of the universe damps the clumping of dark

matter. Also, we can see how the time rate of growth of the perturbations is directly

proportional to the instantaneous value of the perturbation, showing how dark matter
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aids its own collapse.

Considering a matter dominated universe, we can solve the Friedmann Equations

for background cosmology, and write:

a = a0

(
t

t0

) 2
3

H(t) =
2

3t

H2(t) =
8πGρ̄

3
=

4

9t2

Substituting these expressions in the governing equation for density perturbations,

we get a second-degree differential equation:

δ̈ +
4

3t
δ̇ =

2

3t2
δ

Assuming we have a simple pair of power-law solutions to this equation, and putting

in δ = tγ into the equation, we get a characteristic quadratic equation with roots

γ1 = 2/3 and γ2 = −1. γ1 describes the growing mode solution and γ2 describes

the decaying mode. The decaying mode falls off, and is usually considered to be

negligible. The growing mode grows proportional to t2/3 and is denoted D+(t). In a

matter dominated universe, this is equivalent to growing proportional to a. Thus, we

can write the evolution of perturbations as:

δ(x, t) = f(x)D+(t)

Here, D+(t) is called the growth factor. It encodes the complete time evolution

of the perturbation. The factor f(x) encodes the spatial properties of the field of

the initial density perturbations. This equation tells us that an initial configuration

of overdensities in space grows in time. The next section covers the spatial field of

overdensities in more detail.

Thus, in this introductory section, we have seen how from the relations governing a

Newtonian fluid, we can derive the equations for the growth of small initial overdensities

that are supposed to give rise to structures through the processes of gravitational

collapse. The overdensities are seen to collapse under the influence of their own

gravity, and then create gravitational potential wells to catch baryonic matter and aid

the formation of visible structures [1]. Thus, in a way, dark matter forms the canvas

on which the visible universe is painted!
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Chapter 2

The Matter Power Spectrum

As the previous chapter showed, initial perturbations evolve to form the large scale

structure observed today. These consist of a time evolution part, and a factor which

describes the presence of overdensities in space. In this chapter, we study the sta-

tistical properties of this field of overdensities, and look at an important statistical-

observational measure of this field: the power spectrum.

2.1 The Density Contrast Field

For structure formation, we assume the presence of an initial field of density per-

turbations and work forward from there. A more complete model of cosmology would

also supply material that explains the generation of these primordial fields, but for the

scope of this work, we assume the existence of a perturbation field without questioning

its origins.

We work in terms of the density contrast:

δ(x) =
ρ(x)

ρ̄
− 1 (2.1)

2.1.1 Properties of the Field

A field is simply a mathematical scheme that assigns a value to each point in the

space in which it exists. We can think of the density contrast in 3-dimensional space

as making a field which can take random values at every point in space. The mean of

this field is zero, as it is defined as the deviation from a mean value. Also, on account

of the homogeneity and isotropy of space, the statistics of this field remain invariant

under spatial translations and rotations.
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We also assume this primordial field to be Gaussian, which means it can be com-

pletely characterised by measuring its variance. The random values taken by the

overdensity at a point have a Gaussian probability distribution across the ensemble,

i.e. the various possible realisations of the universe. Our scheme of linear evolution of

perturbations also conserves this Gaussianity.

Here, in our pursuit of studying the statistics of this field, we run into a technical

problem of sorts. Remember that statistical properties are computed across a whole

ensemble. In our case, we have only one realisation of the universe! We cannot

generate multiple universes to better study statistics!

A property of random fields called ergodicity comes to our rescue. We assume the

universe is homogeneous on large scales, and patches of the universe that are sufficiently

separated and thus fields in these regions have similar statistical properties. In this

case, the field can be assumed ergodic: volume averages are equivalent to ensemble

averages. Thus, all statistical properties can be now be computed by performing

summations over various patches in the same universe.

For a Gaussian process, we can break the field into independently evolving modes

in Fourier space, as a superposition :

δ(x) =
1

(2π)3

∫
δke

ikxd3k (2.2)

2.1.2 Correlation Function

An important statistical property of a distribution is its correlation function. For

the initial density field, we use the 2-point correlation function. This is a measure

indicative of the relative clustering of observed matter.

ξ(x1, x2) = 〈δ(x1)δ(x2)〉 (2.3)

Since the field is homogeneous, the correlation function can depend only on the

difference of the two points, x1 and x2. Since the field is isotropic, there is no preferred

direction, so the correlation depends on only the absolute value of the difference. So,

we have,

ξ(x1, x2) = ξ(|x1 − x2|) (2.4)
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2.2 The Power Spectrum

2.2.1 Definition

Let us write the two-point correlation function in terms of the position x. We have,

ξ(x) = ξ(x− 0) = ξ(x, 0) = 〈δ(x)δ(0)〉 (2.5)

Expanding in the Fourier space, we can write this as:

ξ(x) = 〈δ(x)δ(0)〉 = 〈 1

(2π)3

∫
δke
−ikxd3k · 1

(2π)3

∫
δ∗k′d

3k′〉 (2.6)

ξ(x) =

∫
d3k

(2π)3

∫
d3k′

(2π)3
e−ikx〈δkδ∗k′〉 (2.7)

Notice that as the Fourier modes are independent and orthogonal, the cross-terms

in k-space will equal to zero, as they have no correlations. As a result, we can define

the product of the k-space perturbations as something that exists only when k is equal

to k′:

〈δkδ∗k′〉 = (2π)3δD(k − k′)P (k) (2.8)

Here, δD is the Dirac Delta Function. The term P (k) and the factor of (2π)3 have

been written for a specific piece of mathematical trickery that will help us define the

power spectrum. Equation 2.8 when used in equation 2.7 gives us:

ξ(x) =

∫
d3k

(2π)3

∫
d3k′

(2π)3
e−ikx(2π)3δD(k − k′)P (k) (2.9)

This reduces to an integral only over k, and thus we see the final form:

ξ(x) =
1

(2π)3

∫
P (k)e−ikxd3k (2.10)

This illuminating equation tells us that the correlation function is the Fourier trans-

form of P (k), which we call the power spectrum. Now, we can simply write the form

of it as:

P (k) = 〈|δk|2〉 (2.11)
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Thus, the power spectrum is the mean square of the amplitude of density pertur-

bations in Fourier space. Physically, it can be interpreted as the amount of density

fluctuation power as a function of the wavenumber of the Fourier mode. We can

also define a dimensionless power spectrum as d〈δ2
k〉/d ln k, as the power of density

fluctuations per logarithmic interval, which is:

∆2(k) =
k3

2π2
P (k) (2.12)

Often, a useful quantity we look at is the RMS value of fluctuations smoothed

over a certain length scale, denoted by σ. To quantify the smoothing, we multiply

the power spectrum by a smoothing function with a characteristic scale R, denoted by

W (kR) and then integrate:

σ2
R =

∫
∆2(k)W 2(kR)d ln k (2.13)

Which we can also write as:

σ2
R =

∫
k3

2π2
P (k)W 2(kR)

dk

k
(2.14)

2.2.2 Functional Form

The current matter power spectrum requires different ingredients in terms of func-

tional forms, and we shall go through them here.

The Primordial Power Spectrum

Harrison and Zel’dovich were the first to argue, independently ([2],[3]), that quan-

tum fluctuations from the inflaton field would result in the generation of initial per-

turbations that were scale-invariant. This gives the form of a power law to the power

spectrum:

P (k) = Akn (2.15)

Where n is nearly equal to 1. This form of the power spectrum is consistent with

the predictions of inflation theories where the spectrum of quantum fluctuations is

independent of scale.

They provide no scheme to calculate the normalisation factor A, but there are

various methods one can use to normalise the power spectrum, as we will see in later
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sections.

The Transfer Function

The initial power spectrum is taken to be a power law, and this scheme fits predica-

tions from inflation and observations of the Cosmic Microwave Background. However,

the later evolution of perturbations make the power spectrum significantly deviate from

this form.

This ”processed” power spectrum is written as a product of the primordial power

spectrum and a transfer function which encodes the growth of perturbations. Thus,

we can write the growth of each mode as:

δk = δk,initial × T (k) (2.16)

And thus the ”processed” power spectrum is:

P (k) = Akn × T 2(k) (2.17)

The first authors to calculate the transfer functions were [4]. The transfer function

takes into account the impact of radiation and matter on the growth of perturbations,

and thus does not cater to equations for a simple fluid. The exact calculation of the

transfer function is a computational challenge as it requires the solution of coupled

Boltzmann equations for each mode. Various fitting functions have been proposed,

out of which we will be using the ones given by Hu and Eisenstein ([5], [6]) for the

purpose of this project, as shown in section 2.4.1. We can, however, have a qualitative

look at the behaviour of the power spectrum modified by the transfer function.

The wavenumber corresponding to the matter-radiation is equality is keq. Pertur-

bation modes with a greater wavenumber (smaller wavelength) enter the horizon at

earlier times, during radiation domination. Modes with lower wavenumber enter dur-

ing matter domination. Now, during radiation domination, density perturbations would

normally grow as a2, but due to the presence of pressure due to photons, their growth

is ”suppressed” and they grow only logarithmically with a. This suppression happens

till the point of matter-radiation equality for all the modes that have entered the hori-

zon before that point. In contrast, modes entering in the matter dominated epoch

continue growing normally. This leads to a ”dip” in the transfer function beginning at

keq and leads to a downward bend in the matter power spectrum.

During matter domination, the amplitude of perturbations from the inflaton field

Φk remains fixed for a mode, but during radiation domination, the density perturbations

δk remain fixed. Since the two amplitudes are related as Φk ∝ k−2δk, the modes en-
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tering during radiation domination should have a growth stunted as T (k) ≈ (k/keq)
−2.

Thus, the power spectrum should be dependent on k as P (k) ∝ kn−4 for modes with

k � keq. For n ≈ 1, the power spectrum should thus be running as P (k) ∝ k−3

beyond keq.

The Growth Factor

From our treatment of structure formation in a matter dominated universe, we

remember that density perturbations grow in time as:

δ(z) = D+(z)δ0 (2.18)

D+(z) is the growth factor here. It encapsulates the growth of the scale factor

between redshift z and the current epoch. Since the normalisation of the scale factor

is arbitrary, we often use the ratio of the scale factor, D(z)/D(0). In section 2.4.1 we

will look at a fitting function for the growth factor.

Final Form

Finally, we have all our ingredients for the functional form of the power spectrum:

the primordial power spectrum, the transfer function and the growth factor. Thus,

P (k, z) = Akn × T 2(k)× D2(z)

D2(0)
(2.19)

Normalization

A commonly used cosmological parameter is the variance of the mass field in

spheres of comoving radius 8h−1 Mpc, which corresponds roughly to the size of galaxy

clusters. This σ8 is of the order of magnitude unity and is used to normalise the power

spectrum and compute the value of the normalisation factor A.

In equation 2.14, we use the following filtering function, the spherical top-hat in

real space, with R = 8h−1 Mpc, to calculate σ8:

W (kR) =
3(sin(kR)− kRcos(kR))

(kR)3
(2.20)

10



Figure 2.1: Matter power spectrum generated using the Hu-Eisenstein fit function as given
in section 2.4.1. Cosmological parameters are Ω = 0.3175,ΩΛ = 0.6825, h = 0.6711,Ωb =
0.0489, σ8 = 0.8344, n = 0.9624. Computed at a redshift z = 0.

2.3 The Impact of Massive Neutrinos

The Standard Model of Particle Physics contains three flavours of neutrinos: the

electron neutrino (νe), the muon neutrino (νµ) and the tau neutrino (ντ ). In 1957,

Pontecorvo was the first to realise that massive neutrinos could change flavours, a

phenomenon called flavour oscillation. Experiments performed on flavour oscillations

in neutrinos (for instance [7]) show that at least two flavours have non-zero masses.

These experiments, however, are sensitive only to the difference squared of these masses

and give a lower bound on their sum [8]. The power spectrum is sensitive to first order

to the sum of the masses of neutrinos, and is impacted by them in a scale-dependent

manner. It can thus be used as an effective tool to constrain neutrino masses.

The Big Bang model predicts the presence of a sea of relic neutrinos. These

were coupled to the plasma, but began to decouple once the interaction rate fell

below the Hubble expansion rate, during radiation domination, while still relativistic.

The decoupling of neutrinos is not instantaneous, but can be approximated to be an

instantaneous process, and post this, they begin free streaming. Relic neutrinos make

the second most abundant particles in the observed universe, at 339 particles and

antiparticles per cubic centimeter.

We will revisit the theory of the impact of massive neutrinos as given in [9].

If they have mass, their contribution to the mass-energy density of the universe is

[10]:

Ων =
ρν
ρcrit

=
Σmν

91.5h2eV
(2.21)
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Post decoupling, neutrinos free stream with an average characteristic thermal ve-

locity, vth. Similar to defining the Jeans length for the propagation of a sound-wave

like disturbance in a fluid, we can define a free streaming length for neutrinos moving

at vth:

kFS(t) =

(
4πG ¯ρ(t)a2(t)

v2
th

)1/2

(2.22)

And a free streaming wavelength as:

λFS = 2π
a(t)

kFS
= 2π

√
2

3

vth(t)

H(t)
(2.23)

Neutrinos flit between relativistic and non-relativistic behaviour before and after

the moment of matter-radiation equality. While in the radiation domination epoch,

they contribute to the content of relativistic matter. In this state, they move at the

velocity of light and their free-streaming length is the same as the Hubble radius.

When they become non-relativistic, their thermal velocity goes down as the relation:

vth ≡
3T 0

ν

m

1

a
≈ 150(1 + z)

eV

m
(2.24)

Therefore, from equations 2.22 and 2.23, we now have,

kFS(z) = 0.82

√
ΩΛ + Ωm(1 + z)3

(1 + z)2

( m
eV

)
hMpc−1 (2.25)

λFS(z) = 7.7
1 + z√

ΩΛ + Ωm(1 + z)3

(eV

m

)
h−1Mpc (2.26)

Neutrinos that are free streaming cannot be confined to regions that are smaller

in scale to their free streaming length. As massive neutrinos behave like dark matter,

and contribute to its total density, their free streaming acts to damp the growth

of perturbations on scales smaller than the free streaming scale, as they transport

mass out of these regions. Also, the comoving free streaming length goes through a

minimum value knr, and modes with a k lower than this evolve as they would in a

pure Lambda-CDM cosmology [9].

In a cosmology without massive neutrinos, during matter domination, density per-

turbations do not grow, but fall as a−2. As the expansion of volume goes as a3, the

density contrast grows as a. Perturbation growth happens due to a balance between

expansion and gravitational clustering. If we add massive neutrinos to this model, they

do not contribute to clustering due to the free streaming effect described above, but
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their density does contribute to the background expansion of the universe. This tilts

the balance in favour of expansion, and thus suppresses the growth of perturbations

on smaller scales. The modified relation between perturbation mode amplitude and

growth factor is [11]:

δ ∝ a1− 3
5
fν (2.27)

Also, the presence of massive neutrinos modifies the background evolution of the

universe by shifting the time of matter-radiation equality. Massive neutrinos contribute

to the energy density of matter, Ωm, after becoming non-relativistic. They thus re-

duce the values of Ωc and Ωb. If these have not become non-relativistic at the time

of matter-radiation inequality, the transition between matter domination and radiation

domination is delayed. We know that during matter domination, dark matter perturba-

tions grow better, and thus, a delayed transition means a relatively suppressed growth

of matter perturbations, leading to a further suppression of the power spectrum ([12]).

The combined effect of these phenomena on the power spectrum can be approxi-

mated by the following linear expression, valid for small fν and large k [13]:

P (k)fν

P (k)fν=0
≈ 1− 8fν (2.28)

2.4 Transfer Function with Massive Neutrinos

Here, we recapitulate the theory of the impact of massive neutrinos on the transfer

function of perturbations as given in [6] and list out fitting functions for a cosmology

with such massive neutrinos, along with the fit of the growth factors used.

For cosmologies with only cold dark matter and baryons as the gravitating species,

the Jeans length encounters a sharp drop after recombination. This enables us to

decompose the power spectrum into a scale-dependent transfer function and a time-

dependent growth function. However, for massive neutrinos, the free streaming scale

remains significant post recombination [4]. The scale decreases gradually in time, and

thus the scale-dependent and time-dependent effects are no longer separable.

2.4.1 Fitting Forms

We begin by defining notation as in [6]. The subscripts b, c, ν correspond to

baryons, cold dark matter, and neutrinos respectively. Ωi denotes the density pa-

rameter of a component. Here, Ωm is the matter density parameter, taken to be

Ωb + Ωc + Ων . Nν refers to the effective number of massive neutrino species. Also,

fi denotes the ratio Ωi/Ωm. Finally, pi defines the logarithmic growth rate for the
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perturbations of a component or a combination of components.

We scale the wavenumber k relative to the scale that crosses at the matter-radiation

equality as:

q =
k

19.0
(ΩmH

2
0 )−0.5(1 + zeq)−0.5 (2.29)

The logarithmic growth rate gets modified as:

pi =
1

4

[
5−

√
1 + 24fi

]
(2.30)

The free streaming epoch is:

yFS = 17.2fν(1 + 0.488f−7/6
ν )(Nνq/fν)2 (2.31)

In this scenario, the overall transfer function describing the growth of weighted

baryon and CDM perturbations can be treated as being composed of a master function

and a scale-dependent growth function [5].

T (q, z) = Tmaster(q)
Dcb(q, z)

D(z)
(2.32)

The master function is described as TsupB(k), where:

Tsup =
L

L+ Cq2
eff

(2.33)

In which,

L = ln(e+ 1.84βc
√
ανqeff) (2.34)

C = 14.4 +
325

60.5q1.08
eff + 1

(2.35)

βc = (1− 0.949(fb + fν))−1 (2.36)

Here B(k) is the corrective factor given as Equation (22) in [6], αν is the small-scale

suppression:
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αν =
fc

fc + fb

5− 2(pc + pcb)

5− 4pcb
× 1− 0.553(fν + fb) + 0.126(fν + fb)

3

1− 0.193
√
fνNν + 0.169fνN0.2

ν

(1 + yd)
pcb−pc

×
[
1 +

pc − pcb
2

(
1 +

1

(3− 4pc)(7− 4pcb)

)
(1 + yd)

−1
]

(2.37)

And,

qeff =
kΘ2

2.7

Γeff
(2.38)

Where Γ refers to the zero-baryon shape parameter and yd = (1+zeq)/(1+zdrag).

Finally, the scale-dependent modified growth factor for weighted cold dark matter

and baryon perturbations is given by:

Dcb(q, z) =

[
1 +

(
D(z)

1 + yFS

)0.7]pcb/0.7
D(z)1−pcb (2.39)

We will use a fit function for the growth factor D(z) [14]:

D(z) =

(
1 + zeq
1 + z

)
5Ω(z)

2

{
Ω(z)4/7−ΩΛ(z)+[1+Ω(z)/2][1+Ω(z)/70]

}−1

, (2.40)

Ω(z) = Ωm(1 + z)3g−2(z), (2.41)

ΩΛ(z) = ΩΛg
−2(z), (2.42)

g2(z) = Ωm(1 + z)3 + (1− Ωm − ΩΛ)(1 + z)2 + ΩΛ (2.43)

Finally, the power spectrum of weighted cold dark matter and baryon perturbations

becomes:

Pcb(k, z) = Akn × T 2
master(k)× D2

cb(z)

D2(z)
× D2(z)

D2(0)
(2.44)

Where the constant A will be determined by comparison to the given value of σ8

in our model being used.
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2.4.2 Codes

We use the methods provided for computing the transfer function depending on the

parameter set (Ωm,Ωb,ΩΛ,Ων , Nν , z) that are provided in companionship with [6] at

http://background.uchicago.edu/ whu/transfer/transferpage.html. We also

use their codes to compute σ8.

We have normalised the power spectrum by computing σ8 and comparing with the

value of the same given in the model taken to be fiducial. For smoothing, we use the

spherical tophat in real space.

We plot the power spectrum form as given in equation 2.44.
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Chapter 3

The Halo Model

Before this chapter, our concern has been the evolution of linear perturbations.

However, much of the large-scale structure we see forms after these evolving pertur-

bations enter the non-linear regime. To study this regime, there are semi-analytic and

numerical models and approaches which we shall cover in this chapter.

3.1 Spherical Collapse

The currently accepted mechanism for the formation of haloes is the ”hierarchical”

model, where due to pressureless collapse, haloes form at the smallest scales, and then

merge to form bigger haloes.

To study the formation of dark matter haloes, we use a model called Spherical Col-

lapse. We assume haloes to be almost spherical overdense dark matter clumps existing

in a pressureless universe of critical density. We begin with a spherical perturbation of

radius R and initial overdensity δ evolving in this background universe. We can treat

the perturbation as a separate universe expanding in an Einstein-deSitter background.

Such a universe collapses after some time and stays stable and bound in the absence

of pressure.

Let us consider the growth of a sphere under its own gravity. The governing

equation for the motion of its radius will be:

d2r

dt2
= −GM

r2
(3.1)

Integrating over r once, it becomes:

ṙ2 =
2GM

r
+ C (3.2)
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This differential equation has the following parametric solution:

r = A(1− cos θ) (3.3)

t = B(θ − sin θ) (3.4)

A3 = GMB2 (3.5)

Considering the behaviour of this solution at early times, when θ → 0, and

expanding terms, we have r = Aθ2/2 and t = Bθ3/6. Eliminating θ, we have

8r3/A3 = 36t2/B2, which gives us r3 = (9/2)GMt2. Since r3 = 3M/4πρ, we have

6πGρ = t−2. Recall here, that in a single-component universe with Ω = 1, ρ ∝ t−2.

Thus, at early times, our spherical perturbation evolves exactly as a single-component

universe. Also, note here that we can write:

r =
A

2

(
6t

B

)2/3

(3.6)

Moving to a higher value of time, we can expand the expressions for r and t further,

to get:

r =
Aθ2

2

(
1− θ2

12

)
(3.7)

t =
Bθ3

6

(
1− θ2

20

)
(3.8)

Solving for r(t), we have,

r =
A

2

(
6t

B

)2/3[
1∓ 1

20

(
6t

B

)2/3]
(3.9)

We can see that the first term on the right hand side of 3.9 is the same as equation

3.6. Thus, the first term represents the first-order expansion, and the second term

shows the growth of the density perturbation.

With this done, let us consider the mass of expanding sphere. The initial mass is

M = 4πρr3/3. Let us say the mass is disturbed by an overdensity of magnitude δ. To

conserve mass in the system, the radius must change by the infinitesimal amount δr.

By the conservation of mass, we have,

M =
4π

3
ρr3 =

4π

3
ρr3(1 + δ)(1 + δr)3 (3.10)
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Which becomes

(1 + δ)(1 + δr)3 = 1 (3.11)

Expanding this and keeping only first-order terms, we get,

δ ≈ −3δr (3.12)

Looking at equation 3.9, we can expand the right hand side a r0 + δr, and then

substitute it in equation 3.12 to get δ as a function of time:

δ = ± 3

20

(
6t

B

)2/3

(3.13)

Let us now revisit the behavior of the parametric solutions. We can differentiate

r with respect to θ to obtain the parametric points that correspond to extrema of r.

These come out to be θ = 0, π, 2π.

We know, that at θ = 0, the sphere is undergoing Hubble expansion and r = 0.

Post this, at θ = π, there is a turnaround, where the radius is maximum. After this

begins the collapse of the sphere, which terminates at the point θ = 2π.

Using equation 3.13 at the parametric points θ = π for turnaround, and θ = 2π

for collapse, we can calculate the linear theory predictions for the overdensities at

turnaround and collapse. For θ = π, we have tturn = πB, and for θ = 2π we have

tcollapse = 2πB.

δturn =
3

20

(
6tturn

B

)2/3

=
3

20
(6π)2/3 = 1.06 (3.14)

δcollapse =
3

20

(
6tcollapse

B

)2/3

=
3

20
(12π)2/3 = 1.686 (3.15)

Thus, we can see that when the overdensity predicated by the linear model ap-

proaches the order unity, the collapse of the overdensity begins, and it finally collapses

at a critical value of overdensity which is 1.686.

3.2 The Halo Mass Function

Haloes of dark matter are the basic units of large-scale structure, and a successful

tool for the verification of the theories of structure formation is the halo mass function,
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which denotes the spectrum of fully-formed, or virialized halos that form out of an initial

field of overdensities.

The mass function gives the number density of virialized haloes in the mass range

M and M + dM at some redshift. It can be calculated observationally by selecting a

volume in space and counting the number of objects of a given mass in that region, and

it is now an important tool in various aspects of cosmology and astrophysics, including

normalization of the power spectrum, the characteristics of the overdensity field, and

in galaxy formation, apart from being a verifier of theoretical models in cosmology.

3.2.1 Press-Schechter Formalism

Press and Schechter [15] were the first ones to provide a process to obtain the

mass distribution of haloes from an underlying density field. In this section, we will

review their formalism and results, along with certain extensions.

Press and Schechter (PS hereafter) assumed that haloes form at the peaks of the

field of overdensities. They said that if the overdensity field is smoothed on a scale of

the radius which corresponds to a given mass M , haloes form in the portions of space

where the overdensity exceeds the critical overdensity of 1.686 (from 3.15). They say

that collapsing perturbations follow linear theory till this critical value, and suddenly

collapse to form haloes. This claim lacks mathematical rigour but turns out to be a

reasonable approximation that works well.

First of all, we look at an equivalent length scale R to a mass M , which is given

by the relation:

M =
4π

3
ρR3 (3.16)

Then, the variance of the density field corresponding to a mass M is the variance

under a smoothing function of radius R, which is σR, which we shall call σM . The

probability distribution of finding a density contrast filtered over this scale is Gaussian,

as the underlying field, and takes the form:

p(δ;M) =
1√

2πσ2
M

exp

(
− δ2

2σ2
M

)
(3.17)

To find the fraction of collapsed mass, as per the theory of PS, we need to integrate

this distribution from the critical value of δcr:

P (> δcr) =

∫ ∞
δcr

P (δ;M)dδ =

∫ ∞
δcr

1√
2πσ2

M

exp

(
− δ2

2σ2
M

)
(3.18)
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Which means,

F (> M) =
1

2

[
1− erf

(
− δ√

2σM

)]
(3.19)

Noting that this is normalised to 1/2, PS realised this meant only half of the

universe was available for collapse, which was due to the Gaussianity of the distribution.

To resolve this, they multiplied this fraction by an ad-hoc factor of 2.

The fraction of collapsed objects in the mass range from M to M + dM is then

given by simply subtracting the fractions at the two points. So,

f(M)dM = F (> M + dM)− F (> M) (3.20)

Therefore,

f(M) =

∣∣∣∣F (> M + dM)− F (> M)

dM

∣∣∣∣ =

∣∣∣∣dF (M)

dM

∣∣∣∣ (3.21)

To get the number density of objects per unit mass interval, we multiply by the

density and divide by the mass of one object, and we get:

dn(M)

dM
=

ρ

M

∣∣∣∣dF (M)

dM

∣∣∣∣ (3.22)

To obtain the functional form, we now decompose the mass derivative operator as:

d

dM
=
dσM
dM

d

dσM
(3.23)

We can then write the number of halo objects as:

dn(M)

dM
=

ρ

M

∣∣∣∣dσMdM
∣∣∣∣
√

2

π

δcr
σ2
M

exp

(
δ2
cr

2σ2
M

)
(3.24)

And the number of haloes with mass greater than M0 as:

N(> M0) =

∫ ∞
M0

dn(M)

dM
dM (3.25)

In conclusion, we can write a general form for the number of haloes, as:
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dn(M)

dM
=

ρ

M

∣∣∣∣d lnσM
dM

∣∣∣∣ f(σ) (3.26)

Where f(σ) is formally labelled the mass function. It is convenient to specify

different models in terms of different fitting forms / expressions for the mass function.

3.2.2 Sheth-Tormen Formalism

Using the formalism of Sheth and Tormen [16], we can obtain a fitting form for

the mass function that better matches large-scale simulations.

In their paper, Sheth, Mo and Tormen (SMT hereafter), assert that the collapse

of a halo depends not only on its initial overdensity, but the surrounding shear field

also. Rather than assuming spherical collapse, they work with a triaxial ellipsoidal

collapse model, where it is assumed that the final collapse happens when the third axis

collapses.

SMT characterise the collapse in terms of initial overdensity δ, ellipticity e and

prolateness p. They express the barrier shape, which is constant in the PS formalism,

as a function of time, and finally give the fitting form:

fST (σ) = A

√
2a

π

[
1 +

(
aδ2
cr

σ2

)−p]
δcr
σ

exp

[
− aδ2

cr

2σ2

]
(3.27)

With the parameters: A = 0.3222, a = 0.707 and p = 0.3.

Figure 3.1: Sheth-Tormen halo mass function. Cosmological parameters are Ω =
0.3175,ΩΛ = 0.6825, h = 0.6711,Ωb = 0.0489, σ8 = 0.8344, n = 0.9624. Computed at
a redshift z = 0.
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3.3 Halo Bias

Galaxies that are formed of luminous objects are the foremost subjects of study

in the quest to understand the observable universe. To study large scale structure

through the observation of luminous objects, we must characterise the relationship

between the underlying dark matter content and galaxies. Since semi-analytic models

of galaxy formation inside dark matter haloes are increasingly being used (like [17],

[18]), it is often useful to study the connection between the overdensity field and the

number of dark matter haloes . This relationship of dark matter halo density and the

underlying matter perturbations is encoded in the halo bias [19]. We define the number

density contrast of haloes δh, which is related to the density contrast of matter:

δh =
Nh − N̄h
N̄h

(3.28)

δh = bδ (3.29)

To analytically compute halo bias, a peak-background split in the density field is

assumed [20], where the peaks enhance the probability of making a halo, and the large-

scale density field is a background to this process. They also provide a fit function for

the Press-Schechter bias relation in terms of halo mass, which Sheth and Tormen [16]

improved upon based on the ellipsoidal collapse model:

bPS(M) = 1 +
(δcr/σM )2 − 1

δcr
(3.30)

bST (M) = 1 +
a(δcr/σM )2 − 1

δcr
+

2p

δcr[1 + (a(δcr/σM )2)p]
(3.31)

Where A, a, p are the same parameters as defined for 3.27.
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Figure 3.2: Sheth-Tormen halo bias. Cosmological parameters are Ω = 0.3175,ΩΛ =
0.6825, h = 0.6711,Ωb = 0.0489, σ8 = 0.8344, n = 0.9624. Computed at a redshift z = 0.
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Chapter 4

The HI Signal

4.1 Fundamentals of HI Observations

Hydrogen is the most common element in the universe, and thus can be used as

an important tool for cosmology. Neutral hydrogen can exist in two spin coupling

states. The first one is with the electron and proton spins parallel and the second

one is with the spins anti-parallel. A change between the two states is a hyperfine

transition that corresponds to the a wavelength of 21.1 cm and a frequency of 1420

MHz. The transition is characterised by a spin temperature, which defines the relative

number densities of atoms in the two states. First predicted by Hendrik van der Hulst

in 1944, and first observed by Ewen and Purcell in 1951, the 21 cm transition line has

since been used extensively as a cosmological probe.

The observations of 21 cm transitions are based on observing varying intensity

(and thus temperature) from a background source as it passes through a cloud of gas.

The background is usually light from the CMB. Fluctuations in temperature indicate

absorption or emission from the hyperfine splitting in the gas. Due to its abundance

in the universe, hydrogen is useful for observation despite the low probability of the 21

cm transition at 2.6× 10−15 per second.

The expression for differential brightness temperature is given as [24]:

δTb = 27xHI(1 + δb)

(
Ωbh

2

0.023

)(
0.15

Ωbh2

1 + z

10

)1/2

×
(
TS − Tγ
TS

)[
∂rvr

(1 + z)H(z)

]
(4.1)

Where δb is the baryon overdensity, Tγ is the backround temperature, TS is the spin

temperature, and ∂rvr is the velocity gradient along the line of sight which encodes
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the anisotropy in the observed signal.

The signal from HI gas systems is a unique cosmological probe as the redshifted

emission line leads to a three-dimensional picturing of the universe, made up of slices

in cosmic time.

4.2 HI Signal In The Post-Reionization Epoch

The dark ages of the universe begin after the decoupling of photons, at around

z = 1000, at the time of the last scattering surface. They end with the formation of

the first luminous objects at around z = 30. Post this, light from these objects works

to ionize the hydrogen present in the inter-galactic medium (IGM). The temperature

and ionized fraction of the universe increase until ionized regions fill almost the entire

universe [25]. This era is known as the Epoch of Reionization (EoR) and lasts upto

around z = 6.

Post the EoR, the primary sources of 21 cm signals are Damped Lyman-α Absorber

systems (DLAs). Since the underlying astrophysics is relatively simple, the 21 cm signal

is expected to be a reliable tracer of the dark matter distribution, and thus maybe used

to study structure formation at redshifts below 6 [26].

DLAs are defined as systems with an HI column density value greater than 2 ×
1020cm−2. Post the EoR, most neutral gas resides in DLAs [27] and houses more than

80 percent of HI, which is shielded from further ionization. Moreover, at redshifts

1 < z < 4 the density parameter of HI remains constant at ΩHI = 0.001 [28]. These

dense gas regions saturate the Gunn-Peterson optical depth [29] and thus Lyman-α

signals are no longer usable. At the same time, Wouthuysen-Field coupling ([30] ,

[31]) increases the proportion of gas in the triplet state, thus making the 21 cm signal

dominant [32].

Observations and simulations of large scale structure suggest that galaxies trace

the underlying dark matter distribution with a bias [33]. If we relate the distribution

of HI gas with dark matter haloes, we can thus model a bias function between the HI

signal and the underlying dark matter distribution.

We can define the power spectrum of the HI signal as the average of the two-point

correlation function of the differential temperature, and label it PHI. We can thus

model the HI bias as a scale and redshift-dependent function b(k, z), which is defined

as [34]:

bHI(k, z) =

[
PHI(k, z)

PCDM(k, z)

]1/2

(4.2)

This function should be scale-dependent on scales smaller than the Jeans Length.
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However, on large enough scales, it should be independent of scale [35]. To analytically

calculate the large-scale neutral hydrogen bias, we use the prescription given by [36]:

bHI(z) =

∫∞
Mmin

dn(M,z)
dM

b(M)MHI(M)dM∫∞
Mmin

dn(M,z)
dM

MHI(M)dM
(4.3)

Here, dn(M, z)/dM represents the number of haloes in a mass range dM , b(M) is

the bias function, and MHI(M) represents the fraction of HI in a halo of mass M . The

integral represents summing number of haloes over bins of width dM with a weight

that corresponds to the fraction of gas in each halo. The denominator equals ρHI.
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Chapter 5

Cosmological Simulations

5.1 Introduction

We know from theories of structure formation that small perturbations in mass

density amplified by gravity lead to the formation of structure in the universe. In the

linear regime, and in situations with a high amount of symmetry, we can solve analytic

equations to study the growth of these. However, post-the quasi-linear regime, and

in a more general set of situations, it becomes increasingly difficult to study structure

formation analytically. Here, the use of N-Body simulations is instrumental to modern

cosmology. They are used to study the evolution of perturbations in highly non-

linear regimes, and form an indispensable tool for testing theory and comparing with

observations.

In writing N-Body codes, one has to keep in mind some physical requirements [21]:

• The simulation volume cannot be assumed to exist in isolation, and the outside

of it has to be accounted for. For this, periodic boundary conditions are used.

In this case the most natural geometry for the simulation volume is the cube.

• The evolution of perturbations should be independent of of boundary conditions.

• The average density over the box should be equal to the average density of the

universe.

• Perturbations averaged over the scale of the box must be of the order of zero.

• The interactions of a large group of particles are approximated by considering a

single particle. Thus their interactions must be collisionless.
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5.2 Method

N-Body codes evolve the simulation volume after taking in a set of initial conditions

consisting of the perturbation and velocity fields at a given starting time. Subsequently,

they work through two steps. Considering a Newtonian N-Body problem, we have two

sets of equations. First, we have the computation of force on each particle due to all

other particles, and secondly, we have the equations of motion for each particle under

the forces on it. A cosmological N-Body code works in the same modules. One module

performs a force computation for each particle, and the other module then updates

the positions and velocities of the particles.

5.2.1 Equations of Motion

In an expanding universe with scale factor a, we can write equations for a collections

of particles that interact only through gravity as [21]:

ẍ+ 2
ȧ

a
ẋ = − 1

a2
∇xφ (5.1)

∇2
xφ = 4πGa2ρ̄δ =

3

2
H2Ω2

m
δ

a
(5.2)

N-Body codes seek to integrate these equations numerically, and then update the

positions and velocities of each particle at every step. The computational complexity

of this step is O(n). The accelerations and velocities are expressed as discrete-time

derivatives of positions, and Euler’s method of solving differential equations is used

along with the Leap-Frog integration method. The error is of the order of the square

of the time step, which is chosen so as to keep momentum conserved.

5.2.2 Force Computation

N-Body codes solve the Poisson equation and the equations of motion at every step.

The calculation of forces on each particle is a time-consuming step in the simulations,

and thus attention is paid to algorithms for reducing computational cost (covered in

5.2.3). The computation of force involves three steps [21]:

1. Density Contrast: Masses are assigned to mesh points by using an isotropic

smoothing function, and then the density contrast is calculated at each mesh

point by calculating the deviation from the average mass density at each point.

Post this, an FFT is done to convert this density contrast field to the Fourier

domain.

2. Poisson Equation: Next, the code solves the Poisson equation with periodic
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boundary conditions. This is mostly done in Fourier space using Green’s Func-

tions. This gives one the gravitational potential.

3. Gravitational Force: The final step involves computing the gradient of the

obtained potential to get the gravitational force. This can be done in the Fourier

domain directly, or can be done in a direct way to compute a discrete derivative

of the potential obtained at each mesh point.

5.2.3 Algorithms

Direct particle-by-particle force calculation includes N(N − 1)/2 calculations for

N particles, and becomes infeasible for a large number of particles, with a complexity

of O(n2). To bring down the computational cost to a logarithmic complexity, there

exist various algorithms:

1. Particle-Mesh: This method works by solving the Poisson equation in Fourier

space, where the equation becomes algebraic. It computes the Fourier modes of

the particles assigned to mesh points by a Fast Fourier Transform method, and

then re-converts to real space to get the perturbed values of potential, with a

complexity of O(N logN). A drawback of this method is that it assumes the

minimum separation to be the grid spacing of the box, and thus ignores particles

that are very close to each other.

2. P3M: The Particle-Paricle-Particle-Mesh method (Efstathiou et al 1985) resolves

the problem of incorrect close-particle forces in the Particle-Mesh method by

calculating the close-range force by direct particle-particle summation and using

Particle-Mesh methods to compute long-range forces.

3. Tree: This method works by dividing the simulation volume into boxes with

multiple particles in a hierarchical structure. The collection of particles in one

box is assumed to be a single entity, and long-range force is computed for these.

4. TreePM: This algorithm combines the workings of the Particle-Mesh method and

the Tree algorithm, to calculate short-range forces by making tree structures, and

long-range forces are computed in Fourier space using Particle-Mesh, using the

best of both these algorithms.

5.2.4 Initial Conditions

N-Body simulations are usually begun from homogeneous initial conditions, with

initial perturbations easily in the linear regime. Setting up these conditions requires

the computation of velocity field and a perturbation field for the simulation contents.
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The density field is related to the gravitational potential by the second equation

in 5.2. The velocity field can also be related to the potential in the Zel’dovich Ap-

proximation. Using these two relations, once the potential is generated, initial density

contrasts and velocities can be generated [22].

Since the density field is a Gaussian random field, the gravitational potential used

for it is also statistically Gaussian. Such perturbations evolve independently in time

and are completely characterised by their power spectrum. Thus, often, the power

spectrum is used to generate initial density fields.

5.3 GADGET-2

GADGET-2 is an improved version of the GADGET (GAlaxies with Dark matter

and Gas intEracT) code written by Volker Springel of the Max Planck Institut für

Astrophysik, Garching [23]. GADGET-2 improves upon the first version as being more

memory-efficient, more accurate in computation, and more versatile by virtue of being

extendable.

The code is available from http://www.mpa-garching.mpg.de/gadget/.

It is a massively parallel code that utilises the Message Passing Interface (MPI)

framework for integrating Smoothed-Particle-Hydrodynamics with the Tree algorithm

(a TreeSPH code). It uses the Cloud-In-Cell (CIC) method for assigning particles to

mesh points, which assigns a weight in inverse relation to the relative distance of the

particle from the nearest grid points along each axis. Gravitational interactions are

computed using the Tree algorithm, and dynamics are performed using SPH methods.

GADGET-2 then can be used to save snapshots containing information about the

positions and velocities of all particles at a given redshift. Additionally, it offers the

option of using a TreePM algorithm for cosmological simulations of structure formation.

5.4 N-GenIC

N-GenIC is a parallel code written by Volker Springel in 2003 for the generation of

initial conditions for cosmological simulations with GADGET. It generates files in both

GADGET-2 formats to be used as inputs.

The code is available from http://www.mpa-garching.mpg.de/gadget/.

This code utilises the Zel’dovich Approximation, and generates a power spectrum at

the given initial redshift to construct the initial density and velocity fields. It can gener-

ate the power spectrum using three methods: 1) The Hu-Eisenstein Transfer Function,

2) The Efstathiou Parametrization, and 3) An input power spectrum generated from

an outside source.
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Chapter 6

Results

The aim of this project is to analyse the impact of massive neutrinos on the obser-

vational tools of structure formation. We have covered how massive neutrinos impact

the matter power spectrum. We have also covered how σR, a quantity derived from

the matter power spectrum, is an input for two other gauges of large-scale structure

formation, namely the halo mass function, and the halo bias. We have also seen how

the 21 cm differential brightness temperature is an important cosmological tool, and

how the power spectrum of this is related to the matter power spectrum.

In the following sections, we shall analytically plot results showing the variation

of these with increasing neutrino mass, to go along with the theory covered in the

chapters before. We have used the Hu-Eisenstein fit function as given in section 2.4.1

to generate the power spectrum. The normalisation is done as mentioned in section

2.2.2, and the final form of the power spectrum is as given in 2.2.2. The value of σ is

computed using equation 2.14.

For plots in the following sections, we use cosmological parameters as given by the

Planck Collaboration in 2013 [37], which correspond to Ω = 0.3175,ΩΛ = 0.6825, h =

0.6711,Ωb = 0.0489, σ8 = 0.8344, n = 0.9624, unless mentioned otherwise.
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6.1 Matter Power Spectrum

As we can see in figure 6.1, the matter power spectrum shows suppression at small

scales (large k) due to massive neutrinos. This is consistent with the theory of section

2.3.

Figure 6.1: Matter power spectrum variation with different neutrino masses at z = 0.

Figure 6.2: Close-up of suppression of power spectrum

6.2 Halo Mass Function

We plot in figure 6.3 the Sheth-Tormen differential mass function, as given by the

mass function in equation 3.27, for cosmologies with different neutrinos.
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Figure 6.3: Sheth-Tormen mass function for different neutrino masses at z = 0.

6.3 Halo Bias

Figure 6.4 shows the Sheth-Tormen halo bias function, as given in equation 3.31

with varying neutrino masses.

Figure 6.4: Sheth-Tormen halo bias function for different neutrino masses at z = 0

6.4 Neutral Hydrogen Bias

In this section, we analytically compute the large-scale weighted neutral hydrogen

bias factor.

We use the method provided as Scheme 1 by [38] for assigning neutral HI to dark

matter haloes. This involves assigning a constant fraction f1 of mass to each dark

matter halo that falls in the mass range Mmin to Mmax, which correspond to the range

of mass of haloes that can have DLA systems.
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MHI(M) = f1 Mmin ≤M ≤Mmax (6.1)

We then use equation 4.3 to compute the large-scale HI bias. Since the mass frac-

tion function MHI(M) is constant, it cancels out from the numerator and denominator

of equation 4.3 in the case of using our scheme. We map the trend of the large-scale

bHI with varying neutrino mass at redshift z = 3.4. This corresponds to a mass range

of Mmin = 109.04 and Mmax = 1011.52.

mν bHI

0.0 eV 1.6321

0.2 eV 1.7007

0.4 eV 1.8262

0.6 eV 1.9777

0.8 eV 2.1556
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6.5 From N-Body Simulations

We ran preliminary N-Body simulations on GADGET-2, with 1283 particles and a

cube of side length 50 Mpc. This test run was for a simple universe with Ω = 0.3 and

ΩΛ = 0.7. The formation of structure can be visualised from a snapshot at z = 0, as

seen in 6.5.

Figure 6.5: Visualisation of large-scale structure formed in a universe with Ω = 0.3 and
ΩΛ = 0.7 at z = 0, in a cube of side 50 Mpc with 1283 dark matter particles. Using
GADGET-2. Initial conditions generated using N-GenIC. Filaments and clumps of collapsed
structures are clearly visible as bright spots.

For the same simulated universe, we computed the power spectrum at z = 3.25

for three different neutrino masses, as seen in figure 6.6.

Figure 6.6: Close-up of suppression of simulated power spectrum for two different neutrino
mass values, for a simulation with cube side 50 Mpc and 1283 particles.

36



We also computed the matter power spectrum from a separate run with 10243

particles, with a snapshot at z = 3.35, as seen in figure 6.7.

Figure 6.7: The analytic power spectrum against the power spectrum plotted from a simulation
of 10243 particles and a cube of side 1h−1 Gpc at z = 3.35. Using Planck 2013 parameters.
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Chapter 7

Future Work

In this work, we have explained and shown the impact of massive neutrinos on the

cold dark matter power spectrum and related quantities, like the halo mass function,

the halo bias, and the HI bias.

As a continuation of this project, we will run massive N-Body simulations to quan-

tify the relationship between the HI bias and massive neutrinos. This is essential as the

neutral hydrogen signal is an essential cosmological probe that provides a tomographic

analysis and visualisation tool, and radio telescopes such as the Giant Meterwave Radio

Telescope (GMRT) are capable of detecting HI signals for a wide range of bandwidths.

We plan to modify the N-GenIC code (5.4) and thus include the Hu-Eisenstein

transfer function fit for massive neutrinos to generate initial conditions corresponding

to cosmologies with varying neutrino masses. We will use these to run massive N-Body

simulations, with 10243 particles each, to generate the matter and the HI real space

power spectrum. We plan to calculate the relation between the two for three neutrino

mass values: 0.0, 0.3, 0.6 eV, at redshifts of around z = 3.25. This is relevant to

our aim to observe the HI signal to probe the post-reionization epoch in models with

massive neutrinos.
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